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Abstract: As of August 6th, 2021, the World Health Organization has notified 200.8 million laboratory-
confirmed infections and 4.26 million deaths from COVID-19, making it the worst pandemic since
the 1918 flu. The main challenges in mitigating COVID-19 are effective vaccination, treatment, and
agile containment strategies. In this review, we focus on the potential of Artificial Intelligence (AI) in
COVID-19 surveillance, diagnosis, outcome prediction, drug discovery and vaccine development.
With the help of big data, Al tries to mimic the cognitive capabilities of a human brain, such as
problem-solving and learning abilities. Machine Learning (ML), a subset of Al, holds special promise
for solving problems based on experiences gained from the curated data. Advances in AI methods
have created an unprecedented opportunity for building agile surveillance systems using the deluge
of real-time data generated within a short span of time. During the COVID-19 pandemic, many
reports have discussed the utility of Al approaches in prioritization, delivery, surveillance, and
supply chain of drugs, vaccines, and non-pharmaceutical interventions. This review will discuss
the clinical utility of Al-based models and will also discuss limitations and challenges faced by Al
systems, such as model generalizability, explainability, and trust as pillars for real-life deployment
in healthcare.

Keywords: COVID-19; machine learning; artificial intelligence; drug discovery; SARS-CoV-2; pan-

demic; diagnosis; prediction; surveillance; vaccine

1. Introduction

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
is the worst pandemic since the 1918 Spanish Flu. Within weeks of the first outbreak in
December 2019 in the Wuhan city of China, the disease took epidemic proportions in China
and other countries. On January 30th, 2020, COVID-19 was declared as a Public Health
Emergency of International Concern, and subsequently, on March 11th, 2020, COVID-
19 was declared a pandemic by the World Health Organization (WHO). The COVID-
19 pandemic has resulted in a total of 200.8 million cases worldwide, with a reported
4.26 million deaths as of August 6th, 2021 [1]. Owing to its high transmissibility and death
rate amongst elderly and immunocompromised individuals, the disease has become the
latest foe to humankind. In terms of the total number of infections and mortality, the USA,
India and Brazil are the most severely hit by COVID-19 [1]. Despite mass vaccination all
over the world, COVID-19 still poses a threat to human lives and livelihood [2]. India’s
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recent COVID-19 crisis suggests that the pandemic is far from over, and new strategies are
required for the surveillance, diagnosis and identification of therapeutic solutions against
COVID-19. In this review, we will focus on the role of Artificial intelligence (AI) and
machine learning (ML) tools in managing the COVID-19 pandemic.

1.1. Pathophysiology of COVID-19

SARS-CoV-2, which was first transmitted from animal-to-humans, is primarily spread
by the droplet route but is also suspected to have airborne, contact, fomite, fecal-oral,
bloodborne, and mother-to-child transmissions [3—6]. It is important to note that both
symptomatic and asymptomatic subjects can transmit the SARS-CoV-2 virus through se-
cretions such as saliva or respiratory droplets while talking, coughing, or sneezing [7-11].
When the respiratory droplets containing SARS-CoV-2 virus come in contact with a suscep-
tible person’s mouth, nose, or eyes, it can result in COVID-19 infection. Transmission can
also occur indirectly when a healthy individual comes in contact with a contaminated object
or surface (fomite transmission) [12-15]. The SARS-CoV-2 infection mainly causes mild
to severe respiratory disease that may lead to death in some cases, though many people
infected with the virus do not develop any symptoms (asymptomatic) [16]. Symptoms
such as fever, dry cough, and tiredness mark the beginning of the SARS-CoV-2 infection.
The infection can also result in a variety of other symptoms, including loss of smell or taste,
chest pain, sore throat, difficulty in breathing, chills, muscle aches, headache, vomiting,
nausea, diarrhea, and a loss of appetite. The average incubation period for COVID-19 in
patients ranges from 2 to 14 days [17-19]. Once in contact, the SARS-CoV-2 virus infects the
lining of nasal, laryngeal, and lung mucosal membranes, thus producing a large number
of virus particles that, in turn, activate the immune system and leads to the production of
cytokines [20-23].

One of the most common COVID-19 manifestations is severe pneumonia, which
may cause shortness of breath [20,24]. COVID-19 infection can be divided into three
main phases [25-27]: the initial phase where SARS-CoV-2 replicates and symptoms are
generally mild; this is followed by a phase where respiratory symptoms continue, and
infection stimulates the adaptive immune system, which if remaining uncontrolled, leads
to a third phase causing hyper-inflammation and death [25]. SARS-CoV-2 can also directly
bind to other cells expressing ACE2 (angiotensin-converting enzyme 2), such as renal
tubular cells and testicular cells, causing damage to the kidney and testicular tissue of
the patients [28-30]. However, the evidence of COVID-19 affecting reproductive organs
remains contentious and needs to be validated. COVID-19 also affects the digestive system,
which leads to loss of appetite, diarrhea, vomiting, and abdominal pain [25,31,32]. The
disease could also affect the liver leading to elevated levels of aspartate transaminase and
alanine transaminase [33-35]. In the early stage of infection, antivirals (e.g., remdesivir,
lopinavir) can provide some benefit in limiting the virus spread, while immunomodulatory
therapies such as anti-interleukin (IL)-6 or corticosteroids may be helpful in the more
advanced stages [36-39]. To date, there are no infallible druggable targets established
to treat COVID-19 associated pathologies [40]. Efforts have been made to develop new
drugs that target the SARS-CoV-2 virus and host surface receptor binding, regulating
endocytosis machinery; viral replication, multiplication, and assembly; or targets that
regulate host-associated innate immunity [41-47].

1.2. Advancement of Computational Methods to Combat COVID-19 Pandemic

In the last two decades, evolvement in computational approaches and modeling
led to a paradigm shift in research methodologies related to infectious diseases [48-54].
Advancements in Al algorithms have helped to analyze a great volume of data and make
meaningful predictions, conclusions, and automation [55]. Al is described as an effort to
mimic the cognitive functions of a normal brain, such as problem solving and learning with
the help of data [56]. The wide spectrum of Al in healthcare includes rule-based systems,
classical ML and deep learning (DL). ML is a branch of Al that solves problems based on
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experiences gained from the curated data, usually referred to as training data, and makes
predictions or decisions without any explicit instruction by the user [57]. Based on the
input data, ML can be divided into two categories- supervised and unsupervised ML. The
supervised ML model is constructed based on labeled data, known as training data, and
this model is used to make predictions on new data. Conversely, in unsupervised ML,
the supplied data are unlabeled and categorized without any previous knowledge [57].
Apart from the classical ML algorithms such as support vector machines, random forest
classifiers, k-means and hierarchical clustering etc., recently, artificial neural networks
(ANN) have become quite popular. ANNs are ML algorithms that mimic biological
neural networks based on the mathematical structure to solve complex data-oriented
problems [58]. Deep learning comprises advanced ANN-based ML algorithms in which
multiple layers of processing units are used to deduce higher-level features from the
data [59]. Most of the supervised ML algorithms can work with small datasets that are
organized and labeled, whereas deep-learning programs can work with raw, unstructured
data and require much larger volumes [60,61]. Al is being utilized in healthcare and
biomedical research with a variety of tasks such as basic research, medicine, patient
and disease management, image analysis and medical devices [62]. For example, IBM’s
Watson for Oncology tool has convincingly predicted drugs for the treatment of cancer
patients. Similarly, Microsoft’s Hanover Project proposes a personalized cancer treatment
option based on AI [57,63]. Predicting drug toxicity using ML techniques has also gained
popularity over the years [64]. After the onset of the COVID-19 pandemic, several efforts
have been made to apply Al techniques on data such as CT scans, X-ray images, and
cough sounds to follow infection [65-67]. Several studies have utilized omics data to find
repurposed drug candidates for COVID-19 treatment [68,69]. In addition to this, data
from social media, mobile phones and news articles have been utilized to track potential
hotspots and community infections [70]. Usage of these big datasets requires a careful
balance between public health and protecting data privacy [71].

In this review, we will discuss how AI has been utilized during this pandemic to
address key issues such as surveillance, detection, rapid diagnosis, drug discovery, and
vaccine development (Figure 1). Furthermore, we will discuss several examples of ML and
other Al applications that have been used previously in fighting complex diseases such as
cancer and tuberculosis and can be applied in the case of COVID-19.
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Figure 1. The application of Artificial Intelligence in handling COVID-19 pandemic. The life cycle of
SARS-CoV-2 and COVID-19 disease etiology is shown on the left panel. On the right, examples of
different applications of Artificial Intelligence (AI) are shown. Al-related tools can be useful in the

accurate diagnosis of COVID-19 disease, finding new drugs, and analysis of data from clinical trials.
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2. Application of Al in Surveillance of COVID-19

Al-based surveillance models can play a major role in predicting global infectious
disease threats [72,73]. An integrated modeling approach that combines different types of
individual data models such as travel data, mobile phone location tracking, epidemiologi-
cal and behavioral pattern data is key to build a successful surveillance system [74]. This
modeling approach requires an understanding of the target population at an individual
level and, most importantly, during mass gatherings to restrict the spread of infection [75].
This type of integrated model-based platform could help identifying threats from infectious
diseases of international concern as well as in anticipatory surveillance. Such integrated
approaches also encourage mathematical modeling that can estimate the spread of in-
fectious diseases with mass gatherings; simulate the effect of public health interventions
aimed at the local and global level [76]. For example, a study predicted the infectious
disease vulnerability index (IDVI) through an integrated modeling approach during the
onset of coronavirus infection in Wuhan, China [77-79]. Multiple indicators such as travel
information, country’s socio-economic condition, politics and health management facilities,
and economic metrics are used to calculate IDVI scores [77-80]. IDVI scores range from
0 to 1, and a lower score signifies potential epidemic threats. Further, travel history along
with common signs and symptoms through mobile phone-based online surveys can be
used to build an Al-based model to predict risk factors [81].

Different methods, such as multi-layered perceptron (MLP) and adaptive network-
based fuzzy inference system (ANFIS), have been demonstrated to predict COVID-19
outbreak [82,83], whereas DL and other ML algorithms were favorable towards predicting
COVID-19 spread in the future [84] (Figure 2). Alongside, mobile data-based surveillance,
social networking data and associated public sentiment analysis are essential tools for the
better management of the COVID-19 pandemic [85]. Contact tracing plays a major role in
minimizing the spread of infection during any epidemic or pandemic. Mobile phone-based
data are a great source to track individual activity, but it has to be wisely used as individual
data privacy and security are always a concern. Different programs based on mobile
applications, such as WeChat, have been developed, which utilizes smartphone-based
GPS and social media data to perform contact tracing and risk assessment [86]. While
such contact tracing may result in high false positives, a novel method has been proposed
which uses data from six different smartphone sensors for contact tracing. This method
outperforms other methods and identifies ~95% fewer false positives, reaching up to ~87%
accuracy [87]. In Table S1, we have summarized some of the AI/ML models uses and their
application in the surveillance of COVID-19.

In addition to contact tracing and predicting disease outbreaks, Al is also used in
understanding COVID-19 risk assessment and public perception [88]. Combining data
from different sources such as social media, demographic, mobility, and COVID-19 re-
lated epidemiological data, Ye et al. developed an Al-based program, x-Satellite. The
development of a-Satellite required initial work on different tools that gather COVID-19
associated information from different sources in real-time and developed an attributed
heterogeneous information network (AHIN) to use this data in a thorough manner. The key
advantage of AHIN is that it can learn in a situation where data availability is restricted.
Further, x-Satellite framework uses conditional generative adversarial net (cGAN) to create
synthetic data and improve the AHIN. Finally, the «-Satellite uses a novel heterogeneous
graph auto-encoder (GAE) to combine data from the close-by geographical areas and find
the risk of any location. This program could be useful in assessing the risk at a commu-
nity level in a hierarchical manner (geographical location such as state or country) [89].
The above applications of these powerful techniques suggest that the implementation of
Al and ML models may provide a better prediction and management of pandemics in
real-time [73,90,91].
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Application of Al in COVID-19 pandemic
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Figure 2. The role of Al tools in the COVID-19 pandemic. (A) The illustration depicts applications of ML and other Al tools
in curated datasets from different paradigms to address the challenges associated with the COVID-19 pandemic. (B) An

overview of existing Al techniques.

3. Role of Al in the Screening of COVID-19 Infected Patients and Diagnosis

The sudden increase in COVID-19 cases is imparting high pressure on healthcare
services worldwide [92,93]. Precise diagnosis of COVID-19 infected patients is fundamen-
tal in the process of providing proper treatment and avoiding the overburdening of the
healthcare system. Large-scale testing during a pandemic has been a challenge due to huge
costs and a shortage of resources. Even the widely used RT-PCR test for the detection
of COVID-19 positive (+) or COVID-19 negative (-) patient samples are not free from
false-negative reports in low viral load conditions coupled with mild or no symptomes.
Therefore, additional assistance from different Al-based modalities can be highly benefi-
cial for accurate screening and diagnosis of COVID-19 and many other diseases [94,95]
(Figure 1). A large number of symptom-based screening tools using decision rules can be
thought of as one of the most common applications of Al Further, we discuss some of the
more advanced forms of Al, including ML and DL.

3.1. Imaging-Based Diagnostics

The various imaging techniques such as chest X-rays (CXR) and Computerized Tomog-
raphy (CT) images are shown to be suitable in identifying COVID-19 (+) patients. However,
the visual analysis of these images by a radiologist is subjective and therefore also prone
to error. Researchers have shown that computer vision-based models can be accurate in
analyzing these images [65-67]. Recently, an Al-based model has been developed which
compared the performance between CT-based and CXR-based datasets [96]. Another study
by Wang et al. showed that a convolutional neural network (CNN)-based model can be
useful to identify COVID-19 infection in patients through CXR images [97]. A mathematical
construct, CNN adaptively learns spatial hierarchies of data such as images [98]. The appli-
cation of CNN-based deep learning methods in radiological image analysis for COVID-19
patients is discussed in great detail in a recent review [99]. A unified slice thickness is one
of the limitations of the CT images, and generative adversarial networks-based Al models
can overcome this challenge [100]. In another study, combining clinical and radiological
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imaging data with Al algorithms is shown to be more effective in identifying COVID-19
(+) patients than a senior thoracic radiologist [101]. An Al-based predictive diagnostic
model was built based on chest CT findings with clinical symptoms, exposure history and
laboratory testing data. This model identified COVID-19 infection with ~84.3% sensitivity
and AUC (Area under the ROC Curve) of 0.92 [101]. Interestingly, researchers came up
with a new set of descriptors based on the shape and texture of chest x-ray images in com-
bination with a support vector machine (SVM) to differentiate COVID-19 from bacterial
and viral pneumonia. This SVM-based model achieved ~89% accuracy and sensitivity
while significantly lowering the computational cost as observed in DL-based methods [102].
In addition, Belfiore et al. projected the role of Thoracic VCAR (GE Healthcare, Milan,
Italy), an Al-based software in COVID-19 diagnosis. The software is capable of doing auto-
mated lung segmentation and quantitative measurements to help in the assessment and
follow-up of lung diseases [103,104]. Overall, these examples suggest that ML and other
Al-based approaches can be useful in the objective assessment of imaging data obtained
from COVID-19 patients.

3.2. Blood Analysis Tests

Routine blood exams provide various blood cell and other biochemical parameters
that can be used for differential diagnosis. Generally, routine blood exams data in numerical
form such as Whole Blood Cells count, blood sugar level, Hemoglobin, etc., can be used
as a feature set to build classification and regression models. Combining blood tests with
advanced Al-based methods can significantly improve the sensitivity and accuracy of
diagnosis [105-107]. In the recent past, several studies have been published which show
the applicability of these techniques in predicting common diseases [107,108]. Alsheref et al.
assessed various ML algorithms to detect blood diseases. In this study, the author assessed
the predictability of commonly used supervised algorithms to detect blood diseases, and
they achieved ~98% accuracy to predict the occurrence of blood disease with LogitBoost
algorithms [108]. Park et al. built three models, LightGBM and extreme gradient boosting
(XGBoost) ML models and a DNN (deep neural network) based model on 5145 cases and
326686 laboratory tests [109]. The authors proposed that among the three models, the
ensemble model showed 81% Fl-score and ~92% prediction accuracy against the most
common diseases [109]. Not only does this blood analysis detect the disease, but it can also
tell about the severity of a disease. In another such example, Karahan et al. has proposed
an ML model to detect disease severity in Chronic venous insufficiency (CVI), which is
a progressive inflammatory disease. In this work, the author concluded that variation in
fibrinogen and albumin levels can predict clinical class with ~75% sensitivity and disease
severity with ~90% sensitivity in patients with CVI [110]. A data mining and a statistical
analysis-based study was conducted by Zeng et al. on data from 3090 COVID-19 patients.
These data were derived from a total of 15 studies showing variability in neutrophils and
lymphocyte count. The ratio of the blood cells can be utilized to monitor the severity and
progression of the disease [111]. Despite the ethical and commercial boundaries across
the globe, researchers are trying hard to make such useful data available in the public
domain. Aljame et al. have utilized open source data provided by Albert Einstein Hospital
in Brazil. The ensemble model was built upon 5644 data samples to attain an outstanding
performance with very high accuracy (~99.88%) and sensitivity (~98.72%) [112]. In one
such study, two ML classification models were built based on hemato-chemical values
from routine blood exams. This study was conducted on 279 patients with COVID-19
symptoms, and 177 were diagnosed as positive, while 102 as negative. ML models were
able to predict positive and negative samples with high sensitivity (~95%) and accuracy
(~86%). This study demonstrated the applicability and clinical usefulness of combining
blood examinations with ML as an alternative to routine genomics-based approaches
such as RT-PCR [113]. In another independent study, the researchers used random forest
(RF), ANN, and a simple statistical test to diagnose SARS-CoV-2 in patients using full
blood cell count data without knowing the symptoms or history of the patients. These
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techniques were able to diagnose SARS-CoV-2 among patients with a high accuracy range
(AUC =94-95%) from the community (AUC = 80-86%) [114]. Ko et al. have shown that
these models can detect the risk of mortality and can be transformed into user-friendly and
accessible open-source applications. The beatcovid web application can be utilized by any
healthcare system for the management of COVID-19. The application can predict mortality
with very high accuracy (~92%), specificity (~91%), and sensitivity (~100%) [115]. Despite
the several successful trials and encouraging results, more effort is required to build a more
generalized model based on robust datasets.

3.3. Analysis of Text and Voice Data

In recent times, natural language processing (NLP) aims to develop computational
algorithms to interpret human languages [116,117] (Figure 2). NLP and text mining have
been adopted in medical research to extract and analyze data from various sources such as
patient symptom records, sentiment data from social networking sites, and news articles to
predict a medical condition or a disease outbreak. During the COVID-19 pandemic, efforts
have been made to adopt such techniques to fight COVID-19 transmissibility.

A recent study has used textual clinical reports to predict the occurrence of COVID-
19 in patients. In this work, featured engineering algorithms, such as Bag of Words
(BOW), report length, and Term Frequency/Inverse Document Frequency (TF/IDF), were
applied to look for the best feature in the textual dataset. Selected features were used
to train traditional and ensemble ML classifiers. The results suggested an outstanding
accuracy of ~96.2% in detecting COVID-19 positive cases [118]. An Al-powered application,
named AI4COVID-19, proposed that it is capable of diagnosing patients based on a sound
recording of cough. This application communicates with the cloud and transfers the
voice recording, and within seconds receives predictions based on the cloud-based Al
engine [119].

4. Application of Al in Predicting COVID-19 Outcome

While the accurate detection of SARS-CoV-2 in patients is the critical step towards
treatment, a fast and early clinical assessment of the disease severity is also crucial to
support decision making and logistical planning in healthcare systems [120-122]. Pa-
tients’ characteristics such as age, varied clinical symptoms, and comorbidities can help
in categorizing the infection severity, need for hospitalization and predict the disease
outcome [122,123]. Such prognosis-based prediction models for a given disease support
the physician’s decision-making and assist in the screening of high-risk patients.

The mortality of COVID-19 patients can be potentially reduced by an early interven-
tion, which is only possible by an accurate and early prediction of disease progression.
XGBoost classifier, a high-performance ML algorithm, is used to identify three potential
biomarkers; lymphocytes, Lactate dehydrogenase (LDH), and high-sensitivity C-reactive
protein (hs-CRP). The XGBoost algorithm has great interpretability potential due to its
recursive tree-based decision system and is shown to be ~90% accurate in predicting patient
mortality approximately 2 weeks in advance [124]. Similarly, in another study, SARS-CoV-2
induced pneumonia was predicted based on seven laboratory parameters (prothrombin
activity, urea, white blood cell, interleukin-2 receptor, indirect bilirubin, myoglobin, and
fibrinogen degradation products) [125]. These parameters were identified by applying
the least absolute shrinkage and selection operator (LASSO) logistic regression model
based on features selected by the mRMR algorithm. This study showed that these multiple
feature-based models can produce ~98% sensitivity and ~91% specificity in predicting
SARS-CoV-2 pneumonia prognosis [125]. Al modalities can also help in predicting the
personalized risk of adverse events or COVID-19 disease trajectory [126,127]. Further,
different datasets such as patient health, travel history, geographical location, and demo-
graphic data were combined to build an AdaBoost Random Forest model. This model
predicted the possible outcome of a COVID-19 patient with ~94% accuracy [128]. A study
on a cohort of 13,690 patients has shown that the ML model can be applied effectively



Pathogens 2021, 10, 1048

8 of21

on a combined feature set. In this study, the patients’ clinical, demographic, and comor-
bidities data were analyzed to predict COVID-19 outcome, which helps the physician in
decision-making [129]. Another example describes the better predictability of ventilation
requirements for COVID-19 patients. This prediction uses ML models over physiological
scoring based on modified early warning systems (MEWS). This model successfully pre-
dicted the need for a mechanical ventilator for a COVID-19 patient during hospitalization
and helps in management of COVID-19 and improved patient care [130]. Another mortality
prediction model for COVID-19 patients was built using the XGBoost algorithm based on
clinical and demographic data. A combination of three main features, namely the type
of patient encounter, minimum oxygen saturation, and age, showed high accuracy (AUC
score of 0.91). This model can be easily implemented due to these three highly accessible
clinical features pertaining to COVID-19 disease [131].

In Table S2, we have presented GitHub repository links from peer-reviewed literature
that can be directly implemented in practice for COVID-19 diagnosis or disease outcome
prediction to accelerate COVID-19 identification in patients, deciding proper treatment
regime and possibly minimizing mortality.

5. Application of Al in Drug Discovery

Antiviral agents and immunomodulators are the two major classes of compounds
tested against COVID-19 [132,133]. Several repurposed drugs such as remdesivir, iver-
mectin, lopinavir, ritonavir, and other antiviral drugs emerged as somewhat effective
treatment strategies for COVID-19 in the preliminary clinical studies [134]. So far, only a
few drug candidates have looked promising as potential COVID-19 treatments [135]. Al
algorithms enable the design of sophisticated and advanced drug development pipelines
that can reduce the time and cost of the lengthy drug discovery process [136-139]. Al-
based techniques are shown to be useful in the identification of repurposable drug can-
didates [69,140-142]. By applying various supervised ML and DL algorithms on experi-
mental data, these techniques are proven to be more effective in identifying new antiviral
drugs [143] (Figure 2). In a recent publication, Zeng et al. proposed that the AOPEDF
(arbitrary-order proximity embedded deep forest approach) algorithm can predict novel
drug-target interactions [144]. Based on a DL-based drug-target interaction model, Beck
et al. predicted drugs that can target SARS-CoV-2-related proteins and are commercially
available [145]. Pham et al. proposed DeepCE, a deep learning algorithm to repurpose drug
compounds. The author demonstrated the application of DeepCE to predict potential leads
for COVID-19 treatment [146]. In another study, an ML model was built to predict new
indications for existing drugs and herbal compounds based on 1330 positive drug-disease
associations though it was not directed against COVID-19 [147]. Overall, there is an enthusi-
asm for Al-based methods in finding repurposed drugs against SARS-CoV-2 [142,148,149].
Compounds with a potential likelihood of being a drug candidate demand sophisticated
infrastructure and bioassay for the assessment of their toxicity, efficacy and response, inter-
action with other biomolecules, bioavailability, and metabolism [150,151]. The assessment
of these pharmacokinetic properties of a drug candidate is considered a primary cause
of failure of a drug during clinical trials [152]. For the SARS-CoV-2 drug discovery, an
insight from the past studies that have combined cheminformatics and ML algorithms
could be very useful [153]. ML learning algorithms are applied in the screening of millions
of compounds against a druggable target in a very fast manner [154,155]. Using a similar
method, Zhang et al. proposed a deep learning-based pipeline that is useful to screen
peptides and small molecules against SARS-CoV-2 viral proteins [156]. The study used
a densely fully connected neural network (DFCNN), which extracts more features from
the data and allows faster virtual drug screening. To train DFCNN, the authors used the
PDBBIND database, which renders structural information of proteins and macromolecular
complexes [156]. In a recent study, Xu et al. used inhibitors of COVID-19 3CLpro and SARS
3CLpro proteins to build an ML-based model to predict novel inhibitors. Their training
data set includes 66 active and 66 inactive compounds [157]. They employed six different
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ML classifiers (RF, SVM, LR, NB, DT, KNN) in their study. Based on probability (based
on area under the ROC curve or AUC), the authors used Logistic Regression to screen
the library. Using ML algorithms, Kabra et al. predicted antiviral peptides, which bind
to SARS-CoV-2 protease [158]. ML algorithms used in the study allowed authors to work
with SARS-CoV-2 virus sequences from different countries in a quick manner [158]. Al
strategies developed here will not only be path breaking for COVID-19 drug discovery but
also pave the way to develop new drugs against other infectious maladies [159-162]. We
have tabulated the primary example of Al-based models used in COVID-19 drug discovery
in Table S3.

In addition to this, ML-based methods can be effectively used in biomarker identi-
fication and drug sensitivity prediction that can improve clinical success rates [163,164].
With so many therapies emerging for COVID-19, Al-based tools can help in clinical trials
andnovel treatments that are safe and effective (Figure 1). These algorithms can also be
used to analyze the data from failed or suspended drug trials for COVID-19. Analysis
of this observational evidence can be further used to assess uncertainty and generate
causal inference to improve the design of future studies [55]. One way to improve the
speed of clinical trials for drugs against COVID-19 is to avoid the traditional multi-phase
route and design dynamic ML-based adaptive trials that start with a small group and
continue into a trial-collection loop in which the collected data are used to determine pivot
or continuation [30,165,166].

The above examples show several applications of ML and other Al techniques in drug
target detection and assessing the impact of the mutation on existing targets, which can be
utilized in the case of SARS-CoV-2 and associated pathologies (Figure 1).

6. Application of Al in Vaccine Development and Delivery

One of the best possible strategies to combat COVID-19 is to develop a vaccine. Several
virus components are used to develop an effective vaccine, namely the whole virus, the
Spike (S) protein, Nucleocapsid (N) protein, and Membrane (M) protein [167-170]. Some
of the vaccine candidates that got EUA approval during the COVID-19 pandemic, e.g.,
Comirnaty (Pfizer/BioNtech), mRNA-1273 (Moderna), Covishield (Oxford-AstraZeneca)
and JNJ-78436735/Ad26.COV2.S (Johnson and Johnson), have been developed exploiting
these viral components [171-177]. Though these vaccines are authorized by the the United
States Food and Drug Administration (FDA), these possible interventions still have safety
concerns and are less likely to give complete protection [178]. More so, side effects such
as allergic reactions have been reported on the administration of these vaccines [179-181].
The challenges in manufacturing, storage, logistics, and issues related to the safety and
efficacy of different vaccine candidates can be overcome by Al algorithms. As for any
vaccine-induced immune response, the first step after COVID-19 vaccine administration is
the presentation of antigenic peptides by major histocompatibility complex (MHC) class
II molecules (or called Human Leukocyte Antigens) present on the surface of antigen-
presenting cells. These exogenous peptides displayed by MHC class II molecules bind to
the T-cell receptor of CD4* T cells. Similarly, MHC class I molecules bind to CD8* T-cells
and activate the cytotoxic lymphocytes. Together, MHC-I and MHC-II molecules induce
antigen-specific responses, which are central to vaccine-induced immunity. One of the
most direct applications of ML and other Al-based strategies in vaccine development is to
identify the presence of antigenic peptides presented by MHC-II. As an example, ML was
used to develop programs such as MARIA (major histocompatibility complex analysis with
recurrent integrated architecture) and MoDec that predicts antigen presentation [182-184].
Various Al-related tools have been used to analyze SARS-CoV-2 viral peptide presentation
on MHC molecules from patients to understand natural immunity. Such an understanding
may directly or indirectly help discover COVID-19 specific immune response and assist
in designing an effective vaccine [185-187]. Ong et al. have used Vaxign-ML-based
reverse vaccinology tools to predict targets that can be used to develop a safe and effective
COVID-19 vaccine [169,188].
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On the other hand, Al tools can help the local governments to assess public perception
of COVID-19 vaccines and help in spreading vaccine awareness to the public. The main
role of Al is basically to analyze all previous data and predict where the disease may
progress in the future. This will not only help in analyzing but also understanding and
suggesting paradigms for the development of future vaccines based on the number of
cases studied, including confirmed, recovered, and patients who succumbed to the disease.
The key advantages of Al are speed and accuracy with which it identifies these cases
and its utility in screening for diagnosis and drug/vaccine development. Arshadi et al.
developed Corona-DB-AlI a collection of compounds, peptides, and epitopes related to
COVID-19 therapeutics. This dataset can be used for training models in order to extract
COVID-19 treatment [189]. More recently, a study conducted at MIT’s computer science
and Al lab has enlightened the use of Al in predicting its efficacy based on racial and
minority populations [190,191]. The study has used two ML-based programs OptiMax
and EvalMax, which work in tandem. OptimAX helps in the identification of the relevant
peptide and designing peptide vaccine. EvalMax works with genetic structures of various
racial ethnicities and finds which HLA (Human Leukocyte Antigen) haplotype frequencies
work with specific peptides. The results with Optivax suggested that Spike protein of
SARS-CoV-2 alone may not be effective in providing complete immunity to all the racial
ethnicities. The study suggests that the addition of some peptides can enhance the immune
response [190]. Al modalities are also used in effective vaccine design and assessing the
safety of these vaccines [192-194].

7. Application of Al in Predicting Possible Viral Mutational Landscape

High infectivity combined with a high mutation rate has made COVID-19 very chal-
lenging and deadly; thus, new SARS-CoV-2 infections are increasing unprecedentedly. [195].
Recent research based on Al has provided significant insight in predicting these mutational
landscapes [196]. Hie et al. have developed an NLP-based algorithm that can predict muta-
tions that have the potential to escape from the immune system and preserve the pathogenic
capability of a virus strain. Using this model, authors are able to predict structural escape
patterns of various viruses, including SARS-CoV-2 [197]. In a similar work, Salama et al.
have presented a proof of concept by applying neural network and rough set technique
on the genetic mutation prediction of Newcastle Disease Virus. The proposed technique
verifies a correlation between the mutation of nucleotides and successfully predicts the
nucleotides in the next generation [198]. Malone et al. used an Al-based algorithm to de-
velop a broad-spectrum vaccine against COVID-19 that can provide maximum coverage for
various COVID-19 strains. In this study, authors have evaluated around 3400 SARS-CoV-2
sequences that are used in the model for predicting epitope hotspots [199]. An recurrent
neural network (RNN)-based Long Short-term Memory (LSTM) model has also shown
very promising results in predicting the future rate of mutation in a person’s body after
COVID-19 infection. Haimed et al. proposed a viral reverse engineering approach in which
they try to find pattern similarity in viral protein and genomic sequences, and further
mutational changes were extracted based on the phylogenetic tree to capture the evolution-
ary behavior [200]. Finally, a possible viral evolutional instance was predicted based on
these two observations combined with the LSTM model [200]. The availability of several
vaccines worldwide has created confidence among the community to tackle this challenge.
However, the emergence of new and deadly strains, such as the B.1.617.2 (delta) variant,
puts the healthcare system under pressure and uncertainty about the future efficacy of the
available vaccines. Not only the prevention but the treatment of COVID-19 is also affected
by new variants; hence, these methods have emerged as a key in tracking, predicting, and
forecasting the mutational landscapes to manage COVID-19 disease [201,202].

8. Challenges and Limitations Associated with Al

Al is poised to play an increasingly important role in all areas of healthcare. However,
the real-world scaling of such solutions poses many challenges and limitations. Validation,
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generalization, explainability, interpretability, risk mitigation, fairness, and inclusiveness
are some of the key challenges in making Al-based decisions in medical and public health
settings [203]. Generalization refers to the ability of Al-based algorithms to perform
efficiently in different settings. Several concerns need to be addressed as the use of ML
and other Al tools are increasing day to day in critical decision making [204]. In Al,
generalizability usually attributes to the ability of an ML algorithm to be effective across
a range of inputs and applications [205]. The narrow context models always have risks
that they can fail at the broad level when applied with different datasets [206]. However,
generalizability cannot be summarized by a universally agreed definition [207]. Owing
to the participation of Al in different applications, it is critical to create and govern these
techniques in a credible and fair manner. In clinical and health care setups, the absence
of transparency within the models, the privacy of the patient data, and the safety and
liability-related issues are major challenges in terms of ethical and regulatory aspects of
AI[208]. Al governance deals with issues such as bias and lack of transparency by engaging
different stakeholders. The prime focus of ethical governance should be on handling ethical
issues involved in clinical operations such as fairness, transparency, and privacy [209,210].
Explainability and interpretability are two important factors that need governance to
monitor and enhance Al algorithmic fairness, transparency, and accountability [210]. In
addition to this, ethical auditing can examine the inputs and outputs of Al algorithms
and models for bias and potential risks [211]. One of the drawbacks of Al-based models
is that their real utility remains largely untested. For example, in the case of COVID-
19 research, Al-based models are theoretical [212,213]. For instance, although minimum
oxygen saturation was identified as an important mortality predictor, it needs to be modeled
alongside the supplemental oxygen delivered, a piece of data that may be missing in
many models.

However, most of these challenges are being proactively addressed by the Al re-
searcher community. In the clinical settings, COVID-19 has triggered the need to go digital,
improve data literacy and explore assistive algorithms. Grassroot-level applications of Al
in addressing public health and the supply chain are also helping in connected care [214].
In the near future, some of the Al tools may be employed in the decision making in medical
supplies, humanitarian aids, population risk assessment, and at a certain level, clinical care
and treatment [126,214,215].

9. Discussion and Conclusions

The world is going through another wave of COVID-19 infections. Worldwide, daily
rates of new infections have jumped significantly since March 2020, with deaths rising—
this horrid emergency is again putting strain on the heavily-burdened healthcare system
throughout the world. To control the pandemic and related stress on healthcare, scientists
are testing the applicability of Al strategies [71,216-225].

The computational approaches have proven very effective in basic research, diagnosis,
and treatment to fight against infectious diseases [54,226-233]. Al-based approaches
have emerged as a useful tool/method in surveillance, diagnostic and discovery of new
therapeutics [139,187,224,234] (Figure 2). Combining a vast variety of data such as blood
exams, clinical images, and recording of cough sound with advanced ML techniques
provides a quick and reliable alternative for diagnosis and assessment of the disease
severity. COVID-19 patients show symptoms such as fever, fatigue, muscle ache, cough
and respiratory issues. Since clinicians cannot identify patients who succumb to the disease
early on, the AI/ML tools are shown to be effective and helpful in making clinical decisions.
From evaluating the safety and efficacy of therapeutics, to help with imaging data analysis
or contact tracing, Al has provided novel solutions in the fight against COVID-19. For
example, Al is helping overcome barriers between repurposed drugs, clinical testing of
therapeutic strategies, and drug authorization [165,166,235,236]. The application of Al
strategies in COVID-19 also faces certain challenges. To fully utilize these strategies, it
is important to address issues related to data privacy, concerns on data collection and
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handling practices, and governmental oversight. Even in the pre-pandemic 2019, many
experts believed that Al has the potential to revolutionize healthcare, and while the risk of
algorithmic bias and data privacy concerns are very real, there is little question that Al has
proven its utility in the fight against COVID-19.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/pathogens10081048/s1, Table S1: Al application in Surveillance of COVID-19, Table S2:
Ready-to-use Al-based models available in GitHub for diagnosing COVID-19 and predicting disease
outcome, Table S3: The application of Al-based models used in COVID-19 drug discovery.
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